3.4.5 \(\int \frac {1}{x^{7/2} \sqrt {a x^2+b x^5}} \, dx\) [305]

Optimal. Leaf size=555 \[ -\frac {8 \left (1+\sqrt {3}\right ) b^{4/3} x^{3/2} \left (a+b x^3\right )}{7 a^2 \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right ) \sqrt {a x^2+b x^5}}-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}+\frac {8 \sqrt [4]{3} b^{4/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 a^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}+\frac {4 \left (1-\sqrt {3}\right ) b^{4/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 \sqrt [4]{3} a^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}} \]

[Out]

-8/7*b^(4/3)*x^(3/2)*(b*x^3+a)*(1+3^(1/2))/a^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))/(b*x^5+a*x^2)^(1/2)-2/7*(b*x^5+
a*x^2)^(1/2)/a/x^(9/2)+8/7*b*(b*x^5+a*x^2)^(1/2)/a^2/x^(3/2)+8/7*3^(1/4)*b^(4/3)*x^(3/2)*(a^(1/3)+b^(1/3)*x)*(
(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^
(1/3)+b^(1/3)*x*(1+3^(1/2)))*EllipticE((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)
^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1
/2)/a^(5/3)/(b*x^5+a*x^2)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)+4/21*b
^(4/3)*x^(3/2)*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)
/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^
2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(1-3^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^
(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/a^(5/3)/(b*x^5+a*x^2)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^
(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.43, antiderivative size = 555, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2050, 2057, 335, 314, 231, 1895} \begin {gather*} \frac {4 \left (1-\sqrt {3}\right ) b^{4/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 \sqrt [4]{3} a^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}+\frac {8 \sqrt [4]{3} b^{4/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 a^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}-\frac {8 \left (1+\sqrt {3}\right ) b^{4/3} x^{3/2} \left (a+b x^3\right )}{7 a^2 \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right ) \sqrt {a x^2+b x^5}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^(7/2)*Sqrt[a*x^2 + b*x^5]),x]

[Out]

(-8*(1 + Sqrt[3])*b^(4/3)*x^(3/2)*(a + b*x^3))/(7*a^2*(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)*Sqrt[a*x^2 + b*x^5])
 - (2*Sqrt[a*x^2 + b*x^5])/(7*a*x^(9/2)) + (8*b*Sqrt[a*x^2 + b*x^5])/(7*a^2*x^(3/2)) + (8*3^(1/4)*b^(4/3)*x^(3
/2)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)
^2]*EllipticE[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4
])/(7*a^(5/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x^2 + b*x^5
]) + (4*(1 - Sqrt[3])*b^(4/3)*x^(3/2)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(
a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqr
t[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(7*3^(1/4)*a^(5/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 +
 Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x^2 + b*x^5])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 314

Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(
Sqrt[3] - 1)*(s^2/(2*r^2)), Int[1/Sqrt[a + b*x^6], x], x] - Dist[1/(2*r^2), Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4
)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1895

Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]

Rule 2050

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Dist[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int \frac {1}{x^{7/2} \sqrt {a x^2+b x^5}} \, dx &=-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}-\frac {(4 b) \int \frac {1}{\sqrt {x} \sqrt {a x^2+b x^5}} \, dx}{7 a}\\ &=-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}-\frac {\left (8 b^2\right ) \int \frac {x^{5/2}}{\sqrt {a x^2+b x^5}} \, dx}{7 a^2}\\ &=-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}-\frac {\left (8 b^2 x \sqrt {a+b x^3}\right ) \int \frac {x^{3/2}}{\sqrt {a+b x^3}} \, dx}{7 a^2 \sqrt {a x^2+b x^5}}\\ &=-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}-\frac {\left (16 b^2 x \sqrt {a+b x^3}\right ) \text {Subst}\left (\int \frac {x^4}{\sqrt {a+b x^6}} \, dx,x,\sqrt {x}\right )}{7 a^2 \sqrt {a x^2+b x^5}}\\ &=-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}+\frac {\left (8 b^{4/3} x \sqrt {a+b x^3}\right ) \text {Subst}\left (\int \frac {\left (-1+\sqrt {3}\right ) a^{2/3}-2 b^{2/3} x^4}{\sqrt {a+b x^6}} \, dx,x,\sqrt {x}\right )}{7 a^2 \sqrt {a x^2+b x^5}}+\frac {\left (8 \left (1-\sqrt {3}\right ) b^{4/3} x \sqrt {a+b x^3}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^6}} \, dx,x,\sqrt {x}\right )}{7 a^{4/3} \sqrt {a x^2+b x^5}}\\ &=-\frac {8 \left (1+\sqrt {3}\right ) b^{4/3} x^{3/2} \left (a+b x^3\right )}{7 a^2 \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right ) \sqrt {a x^2+b x^5}}-\frac {2 \sqrt {a x^2+b x^5}}{7 a x^{9/2}}+\frac {8 b \sqrt {a x^2+b x^5}}{7 a^2 x^{3/2}}+\frac {8 \sqrt [4]{3} b^{4/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 a^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}+\frac {4 \left (1-\sqrt {3}\right ) b^{4/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 \sqrt [4]{3} a^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 57, normalized size = 0.10 \begin {gather*} -\frac {2 \sqrt {1+\frac {b x^3}{a}} \, _2F_1\left (-\frac {7}{6},\frac {1}{2};-\frac {1}{6};-\frac {b x^3}{a}\right )}{7 x^{5/2} \sqrt {x^2 \left (a+b x^3\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(7/2)*Sqrt[a*x^2 + b*x^5]),x]

[Out]

(-2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[-7/6, 1/2, -1/6, -((b*x^3)/a)])/(7*x^(5/2)*Sqrt[x^2*(a + b*x^3)])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.61, size = 3048, normalized size = 5.49

method result size
risch \(\text {Expression too large to display}\) \(1125\)
default \(\text {Expression too large to display}\) \(3048\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(7/2)/(b*x^5+a*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/7/(b*x^5+a*x^2)^(1/2)/x^(5/2)*(3*I*3^(1/2)*(1/b^2*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-
a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*a*b*x^3+16*I*(-a*b^2)^(2/3)*3^(1/2)*(x*(b
*x^3+a))^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*
x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/
(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3))
)^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^4-16*(-a*b^2)^(1/3)*(x*(b*x^3+a))^
(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2
)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(
1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),(
(I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*b*x^5+24*(-a*b^2)^(1/3)*(x*(b*x^3+a))^(1/2)*(
-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3)
)/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(
-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1
/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*b*x^5+8*I*3^(1/2)*(x*(b*x^3+a))^(1/2)*(-(I*3^(1/2)-3
)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2
))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)
^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*
3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b*x^3+32*(-a*b^2)^(2/3)*(x*(b*x^3+a))^(1/2)*(-(I*3^(1/2)-3)*x*b
/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-
b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3
)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/
2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^4-48*(-a*b^2)^(2/3)*(x*(b*x^3+a))^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^
(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b
^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)
*EllipticE((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*
3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^4-8*I*(-a*b^2)^(1/3)*3^(1/2)*(x*(b*x^3+a))^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^
(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b
^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)
*EllipticE((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*
3^(1/2))/(I*3^(1/2)-3))^(1/2))*b*x^5-8*I*3^(1/2)*(x*(b*x^3+a))^(1/2)*b^2*x^6+4*I*3^(1/2)*(1/b^2*x*(-b*x+(-a*b^
2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/
2)*b^2*x^6+16*(x*(b*x^3+a))^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*
(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b
*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-
b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b*x^3-24*(x*(b*
x^3+a))^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x
+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(
-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))
^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b*x^3-8*I*(-a*b^2)^(2/3)*3^(1/2)*(x
*(b*x^3+a))^(1/2)*x^4+24*(x*(b*x^3+a))^(1/2)*b^2*x^6-12*(1/b^2*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/
3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*b^2*x^6+24*(-a*b^2)^(1/3)*(x*(
b*x^3+a))^(1/2)*b*x^5-I*3^(1/2)*(1/b^2*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))
*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*a^2+24*(-a*b^2)^(2/3)*(x*(b*x^3+a))^(1/2)*x^4-9*(1/b^2
*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b
^2)^(1/3)))^(1/2)*a*b*x^3-8*I*(-a*b^2)^(1/3)*3^(1/2)*(x*(b*x^3+a))^(1/2)*b*x^5+3*(1/b^2*x*(-b*x+(-a*b^2)^(1/3)
)*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(7/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^5 + a*x^2)*x^(7/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.50, size = 55, normalized size = 0.10 \begin {gather*} -\frac {2 \, {\left (4 \, \sqrt {a} b x^{5} {\rm weierstrassZeta}\left (0, -\frac {4 \, b}{a}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right )\right ) + \sqrt {b x^{5} + a x^{2}} a \sqrt {x}\right )}}{7 \, a^{2} x^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(7/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

-2/7*(4*sqrt(a)*b*x^5*weierstrassZeta(0, -4*b/a, weierstrassPInverse(0, -4*b/a, 1/x)) + sqrt(b*x^5 + a*x^2)*a*
sqrt(x))/(a^2*x^5)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{\frac {7}{2}} \sqrt {x^{2} \left (a + b x^{3}\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(7/2)/(b*x**5+a*x**2)**(1/2),x)

[Out]

Integral(1/(x**(7/2)*sqrt(x**2*(a + b*x**3))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(7/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^5 + a*x^2)*x^(7/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^{7/2}\,\sqrt {b\,x^5+a\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(7/2)*(a*x^2 + b*x^5)^(1/2)),x)

[Out]

int(1/(x^(7/2)*(a*x^2 + b*x^5)^(1/2)), x)

________________________________________________________________________________________